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It is shown analytically that gap solitons can occur in materials with x® susceptibility due to
cascaded second-order nonlinearities. Families of bright and dark spatial gap solitons are described
in the framework of asymptotic expansions that are valid, in particular, for nonzero phase mismatch
between the first and second harmonics; effective coefficients of self- and cross-phase modulation are

calculated.
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The possibility of observing self-focusing phenomena
and the propagation of optical solitons is usually con-
nected with the cubic (Kerr) nonlinearity of x(®) materi-
als, however it has already been shown theoretically and
experimentally that a large nonlinearity-induced phase
shift [1,2], self-focusing and self-diffraction [3-5] may be
achieved through cascaded x(® : x(?) processes. The pos-
sible existence of such phenomena were mentioned much
earlier (see Ref. [6] as an example) but only recently has
it been demonstrated that many of the nonlinear effects
predicted for cubic media (or, more generally, Kerr-like
materials with the intensity-dependent refractive index)
may be expected through cascading, including spatial
solitons of quadratic nonlinearities [7—10]. As a matter
of fact, in the limit of large (nonlinear) phase mismatch
between the first- and second-harmonic field components
the soliton dynamics governed by second-order nonlinear
effects may be analyzed in the framework of the standard
nonlinear Schrédinger (NLS) equation with the effective
XS)f ~ [x®1?, where x(? stands for the components of
the second-order nonlinear susceptibility tensor (see, e.g.,
[7,9,10]). Such a reduction to an effective NLS equation
for quadratic nonlinearities may be justified by a simple
asymptotic technique and it is well understood in other
models (see, e.g., [11,12]). This allows us to expect that,
in spite of different physics, there will be no principal
difference (in mathematics) between the effects governed
by second- and third-order nonlinearities, at least in the
limit of large phase mismatch. Of course, this is prob-
ably not true for the opposite case (small or zero phase
mismatch) where a strong energy exchange between two
harmonics excited in a x(? material may lead to novel
nonlinear phenomena (see, e.g., Ref. [10] where a family
of two-wave bright solitons has been discovered).

The present paper has a purpose to demonstrate an-
alytically that x(®) materials with a spatially periodic
linear susceptibility (grating) can support gap solitons,
self-localized field structures that can occur in nonlinear
periodic media in the vicinity of the Bragg resonance.
Such gap solitons are known to be possible for mate-
rials with Kerr nonlinearity (see the recent review pa-
per [13] and references therein, and also the most re-
cent paper [14]) but here this phenomenon is predicted
for nonlinear materials with x(?) susceptibility (e.g., non-
centrosymmetric crystals), so that one can expect to dis-
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cover experimentally spatial gap solitons, e.g., by using
cascaded second-order processes that are known to pro-
vide one of the fastest electronic nonlinearities available
at the moment. As follows from our analysis, the cas-
caded second-order effects are also responsible for the
effective self- and cross-phase modulation that provide a
strong nonlinear coupling between the fields propagating
to the right and left.

Following the works on x(®) spatial gap solitons in
waveguide geometries [15,16], we consider nonlinear elec-
tromagnetic waves of the form £(z, z;t) = E(z) exp(tkz—
iwt) propagating along a structure with a periodic dielec-
tric constant e(z) that possesses second-order (quadratic
or x®) nonlinearity. This means that the second har-
monic will also be excited in such a medium. Considering
interaction of the first and second harmonics we present
their fields in the form

Ei(z, z;t) = Ey(x, z)etkr =it
Ea(z, z;t) = Ez(m,z)eik”z_zi“’t, (1)

where F; and E; are assumed to be slowly varying along
the propagation direction z and w is the central fre-
quency of the first harmonic. Substituting Eq. (1) into
Maxwell’s equations and taking into account the non-

(2)

linear coupling through components x;:; of the second-

order-nonlinearity tensor, we come to tfle equations,

0E, O%E;

22k1~67 + W + Ak?El + XlE;Eze"iékz — O, (2)
., OFE 8%’E )
22]626—22 + 8.’1:22 ~+ Ak%Ez + XzEfeuskz = O, (3)

where x1 = (871w?/c?)x® (w;2w, —w), x2 = (167w?/
c?)x® (2w;w,w), 8k is the phase mismatch between the
first and second harmonics, 6k = 2k; — k2, and Ak},
are defined through the expression, AkZ = —k2
+(w2/c?)e,, where n = 1,2 and €, = 1 + 4mxV (w,,) are
linear permittivities calculated for the frequencies w; = w
and w; = 2w. Equations (2) and (3) are well known in
the theory of the second-harmonic generation (see, e.g.,
[17]) but here, in fact, they are generalized to include the
effects produced by diffraction in the transverse direction.
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Now suppose the medium periodic in the z direction
(e.g., due to grating) so that €,(z) = €on + €n(x), where
€on is the spatial average and €,(z) is periodic with the
period L = w/q. Then we can expand &, (z) into a Fourier
series and keep only the first harmonics, i.e.,

n() = €on + €™ cos(29z). (4)

As is well known, under the Bragg condition, i.e., when
one half of a wavelength fits exactly into each period of
the grating, such a periodic structure leads to a strong
reflection, so that in linear theory the wave propagation
near the Bragg resonance is forbidden. In the nonlinear
case, a strong interaction between the fields propagating
to the right and left can create a self-localized structure
known as a gap soliton [13]. To derive equations of non-
linear theory, we use a coupled-mode analysis and asymp-
totic expansions, introducing slowly varying amplitudes
F, and F_, for the first harmonic, and Go, G4, and G_,
for the second harmonic, of the fields propagating to the
right and left. So we look for solutions in the form

E, =¢ (Fy€'%® + F_e %) + c.c,, (5)

E, = ¢2 (Go + Gpe¥a G_e—%‘”) e®** 4 cc., (6)

where c.c. stands for complex conjugation and the
(small) parameter € is introduced to apply properly a
technique of asymptotic expansions. It can be shown
that, similar to [7,9,10], the asymptotic expansions can be
justified, in particular, for large phase mismatch. How-
ever, such asymptotic expansions are in fact valid even
for small 6k provided a nonlinear phase mismatch is big
enough (see, e.g., discussions in Ref. [10]).

The amplitudes Fy, F_, Go, G4, and G_ in Egs. (5)
and (6) are considered to be slowly varying in  and
z, and, to take into account this property, we assume
8/0z,8/8z ~ €2. At last, the coupled-mode analysis,
usually used for deriving coupled equations in the theory
of gap solitons [13], is based on the idea that the am-
plitude of the periodic grating is also small and is of the
order of the nonlinearity-induced phase shift, so that here
we use also the condition €™ = 2
n=1,2.

Substituting Eqs. (5) and (6) into Eq. (2) and con-
sidering the scaling relations mentioned above, we obtain
the following system of equations for Fy and F_:

oF, oF,

an, where a, = O(1),

2iky oz +2iq—5x—+a1F——+X1(GOF: +G+F-r-) =0,
(M

. OF_ . OF_ . "
2ik; 5 2iq e +a1Fy + x1(GoFi + G_FZ) = 0,
(8)

where the wave vectors for both harmonics are fixed by
the dispersion relations,
2 2
w 4w
k2 = —63601 - q27 k% = —62 €02 — 4q2- (9)

It is important to note that in Egs. (7) and (8) all terms

BRIEF REPORTS 51

are of the same order, but nonlinear parts involve also
the amplitudes of the second harmonic. These additional
equations must follow from Eq. (3) which after substitu-
tion of Egs. (5) and (6), are reduced, in the lowest order
in €, to the simple algebraic relations,

X2

Go=—22 __F F_
0 (k25k-2q2) + ) (10)

X2 2 X2 2

= F - = F .
G+ 2k, 0k~ ¢ 2k,0k" ~ (11)

Using Egs. (10) and (11) we transform Egs. (7) and
(8) to the system of coupled equations for the amplitudes
F and F_ of the fields propagating to the right and left,

iaﬂ +i5% +AF_+Tg|Fi|?Fy +T'x|F_|*F, =0,
0z ox

(12)

OF- _ ;59F- +AF, +Tg|F_|?F_ + T'x|F+|*F_ = 0,
oz oz

(13)

where § = q/k1, A = a1/2kq, and the coefficients I'g and
FXa
X1X2

s = Tk kabh T X

X1X2

= 2k (k20k — 2¢2) (14)

describe the effective self- and cross-phase modulation
due to cascading. Equations (12) and (13) look simi-
lar to the basic nonlinear equations of the theory of gap
solitons in a Kerr medium [13], however, for a pure cu-
bic nonlinearity I'xy = 2I's. The same relation holds here
between I's and I'x in the limit of large phase mismatch,
6k > qz/kz.

Substituting the solutions Fly,F_ ~ exp(iQz — i83z)
into the linearized version of Eqs. (12) and (13), we
come to the conclusion that in the vicinity of the Bragg
resonance there is the spectrum gap, |3|] < A. To find
stationary solutions of nonlinear equations (12), (13), we
use the transformation (cf. [18])

Fi = (u+iv)e P F_ = (u—iv)e ¥? (15)
where u(z) and v(z) are real functions, and obtain the
system of ordinary differential equations for u and v,

d
ﬁ = Aju+y(u? +3)2)u,
d
ﬁ = —A_v —y(u? + v*)v, (16)

where Ay = (B+A)/é and v = (I's + 'x)/é. Equations
(16) may be treated as a Hamiltonian system, with v as a
generalized momentum and v as a generalized coordinate,
and the conserved energy (Hamiltonian),

E = 2(Aju? + A_v?) + Iy(u? + 0?)2 (17)

Then different types of stationary solutions are charac-
terized by different values of E. We are interested here



51 BRIEF REPORTS 1615

in spatially localized solutions which on the phase plane
(u,v) correspond to separatrix trajectories. Not restrict-
ing generality of our analysis we take v > 0, so that for
positive A, and A_ there are no separatrix trajectories,
i.e., localized solutions of Eqs. (16) are absent. How-
ever, when A, > 0 and A_ < 0, i.e., when S is selected
just within the gap of the linear spectrum, || < A, the
separatrix trajectory on the plane (u,v) starts from the
unstable (saddle) critical point (0,0) and returns to it,
describing a spatially localized mode with even v(z) and
odd u(z) functions, which corresponds to a bright gap
soliton.

Introducing the auxiliary function g = u/v, we reduce
the system (16), with the help of Eq. (17), to the equa-
tion

d 2
(ﬁ) — (A4 AP+ B+, (18)

which may be easily integrated (see the similar approach
used in [19,20]). For the separatrix trajectory starting
from and coming to the point (0,0) we determine E = 0,
so that the solution is

Ii_| tanh¢, &=z AL|A_], (19)
+

9(z) ==

and, therefore,

2|A_|A% cosh® ¢

Uz(w) = 2 2 )
Y(A4 cosh® £ + |A_|sinh” &)2

u(z) = g(x)v(z). (20)

The solution (15), (19), and (20) presents another form
of the well-known bright gap soliton (see, e.g., [13] and
references therein).

If both A_ and A, are negative, the critical point
(0,0) on the phase plane (u,v) becomes stable, and bright
gap solitons do not exist. This corresponds to the case
when the propagation constant ( is selected below the

gap, B < —A. In this case we find dark gap solitons
similar to those discovered for diatomic lattices [19] (see
also [21]). The separatrix trajectory corresponding to
such a dark soliton connects two unstable (saddle) crit-
ical points (ug,0) and (—wug,0), where u2 = |A,|/7.
Calculating the value of FE for this trajectory, —Aﬁ_ /4,
we find the solution g(x) = +Asinh(Bz), where A? =
(1Aa_] = |Aa4])/2|Aa4] and B? = 2|AL|(|A-] — |AL]),
which together with Eq. (17) allows to find u and v,

,Y(l _:gz)z [(lA—I + |A+|g2)

+V/(AT+IAP? + B+ 7],  (21)

v2(m) =

u(z) = g(z)v(z). In that case the even function v(z) is
again spatially localized but the odd function u(z) has
nonvanishing asymptotics, so that the envelopes F, and
F_ describe a localized wave on a background with the
intensity uZ = |A,|/v. As follows from Eq. (21), there
are two types of dark gap solitons, one with a lower inten-
sity and the second one, with a larger intensity relative to
the background intensity. However, the stability of dark
solitons remains to be investigated.

In conclusion, we have predicted analytically that gap
solitons can be observed in materials with second-order
nonlinearities through the cascaded x(® : x(2) processes.
Using the asymptotic technique, we have derived the sys-
tem of coupled-mode equations for the slowly varying
amplitudes of the fields propagating to the right and left,
and we have determined coefficients of the effective self-
and cross-phase modulation that appear due to cascad-
ing. We have also suggested a simple (and straightfor-
ward) way to find stationary localized solutions corre-
sponding to bright and dark gap solitons. The results
obtained allow us to conclude that x(?) materials may be
well suited for the experimental study of (spatial or tem-
poral) gap solitons and other nonlinearity-induced effects
in periodic media.
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